Front Interactions in a Three-Component System
نویسندگان
چکیده
The three-component reaction-diffusion system introduced in [C. P. Schenk et al., Phys. Rev. Lett., 78 (1997), pp. 3781–3784] has become a paradigm model in pattern formation. It exhibits a rich variety of dynamics of fronts, pulses, and spots. The front and pulse interactions range in type from weak, in which the localized structures interact only through their exponentially small tails, to strong interactions, in which they annihilate or collide and in which all components are far from equilibrium in the domains between the localized structures. Intermediate to these two extremes sits the semistrong interaction regime, in which the activator component of the front is near equilibrium in the intervals between adjacent fronts but both inhibitor components are far from equilibrium there, and hence their concentration profiles drive the front evolution. In this paper, we focus on dynamically evolving N-front solutions in the semistrong regime. The primary result is use of a renormalization group method to rigorously derive the system of N coupled ODEs that governs the positions of the fronts. The operators associated with the linearization about the N-front solutions have N small eigenvalues, and the N-front solutions may be decomposed into a component in the space spanned by the associated eigenfunctions and a component projected onto the complement of this space. This decomposition is carried out iteratively at a sequence of times. The former projections yield the ODEs for the front positions, while the latter projections are associated with remainders that we show stay small in a suitable norm during each iteration of the renormalization group method. Our results also help extend the application of the renormalization group method from the weak interaction regime for which it was initially developed to the semistrong interaction regime. The second set of results that we present is a detailed analysis of this system of ODEs, providing a classification of the possible front interactions in the cases of N = 1, 2, 3, 4, as well as how front solutions interact with the stationary pulse solutions studied earlier in [A. Doelman, P. van Heijster, and T. J. Kaper, J. Dynam. Differential Equations, 21 (2009), pp. 73–115; P. van Heijster, A. Doelman, and T. J. Kaper, Phys. D, 237 (2008), pp. 3335–3368]. Moreover, we present some results on the general case of N-front interactions.
منابع مشابه
Stability of Three-Wheeled Vehicles with and without Control System
In this study, stability control of a three-wheeled vehicle with two wheels on the front axle, a three-wheeled vehicle with two wheels on the rear axle, and a standard four-wheeled vehicle are compared. For vehicle dynamics control systems, the direct yaw moment control is considered as a suitable way of controlling the lateral motion of a vehicle during a severe driving maneuver. In accorda...
متن کاملDYNAMICAL ANALYSIS AND DESIGN OF FRONT ENGINE ACCESSORY DRIVE SYSTEM
In this paper, Front Engine Accessory Drive (FEAD) system of automotive engine is modeled with ADAMS software. The model is validated using engine test data. It is then used to investigate the effect of design parameters on the system performance such as belt vibration and loads on the idlers. Three alternative layouts were developed in order to improve the performance of original EEAD system. ...
متن کاملExperimental Investigation ofthe Hovering Performance of aTwin-Rotor Test Model
Hover performance of a twin-rotor test model in terms of rotor overlap sweep, blade collective pitch, and blade tip speedwasexaminedexperimentally.The experimental setup consisted of two three-bladed rotors (tandem rotor configuration) with a diameter of1,220 mm and constant chord of 38 mm, giving a blade aspect ratio of 16.05. The blades were of a rectangular planform with NACA 0012 cross-sect...
متن کاملAdvanced Exergy Evaluation of an Integrated Separation Process with Optimized Refrigeration System
Advanced exergy analysis is a tool to split the exergy destruction of the system to achieve a better perspective about the potentials of a system for improvements. In addition, the component interactions and their exergy destruction dependency with the other equipment are investigated through the advanced exergy analysis. For this purpose, it divides the exergy destruction calculated by convent...
متن کاملProject Portfolio Risk Response Selection Using Bayesian Belief Networks
Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 9 شماره
صفحات -
تاریخ انتشار 2010